Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Sci Immunol ; 9(93): eadj9534, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517951

RESUMO

Antigenic drift, the gradual accumulation of amino acid substitutions in the influenza virus hemagglutinin (HA) receptor protein, enables viral immune evasion. Antibodies (Abs) specific for the drift-resistant HA stem region are a promising universal influenza vaccine target. Although anti-stem Abs are not believed to block viral attachment, here we show that complement component 1q (C1q), a 460-kilodalton protein with six Ab Fc-binding domains, confers attachment inhibition to anti-stem Abs and enhances their fusion and neuraminidase inhibition. As a result, virus neutralization activity in vitro is boosted up to 30-fold, and in vivo protection from influenza PR8 infection in mice is enhanced. These effects reflect increased steric hindrance and not increased Ab avidity. C1q greatly expands the anti-stem Ab viral escape repertoire to include residues throughout the HA, some of which cause antigenic alterations in the globular region or modulate HA receptor avidity. We also show that C1q enhances the neutralization activity of non-receptor binding domain anti-SARS-CoV-2 spike Abs, an effect dependent on spike density on the virion surface. These findings demonstrate that C1q can greatly expand Ab function and thereby contribute to viral evolution and immune escape.


Assuntos
Vacinas contra Influenza , Influenza Humana , Camundongos , Animais , Humanos , Hemaglutininas , Complemento C1q , Ligação Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Antivirais
2.
Sci Immunol ; 9(93): eadi4926, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457515

RESUMO

Lymph node (LN) germinal centers (GCs) are critical sites for B cell activation and differentiation. GCs develop after specialized CD169+ macrophages residing in LN sinuses filter antigens (Ags) from the lymph and relay these Ags into proximal B cell follicles. Many viruses, however, first reach LNs through the blood during viremia (virus in the blood), rather than through lymph drainage from infected tissue. How LNs capture viral Ag from the blood to allow GC development is not known. Here, we followed Zika virus (ZIKV) dissemination in mice and subsequent GC formation in both infected tissue-draining and non-draining LNs. From the footpad, ZIKV initially disseminated through two LN chains, infecting LN macrophages and leading to GC formation. Despite rapid ZIKV viremia, non-draining LNs were not infected for several days. Non-draining LN infection correlated with virus-induced vascular leakage and neutralization of permeability reduced LN macrophage attrition. Depletion of non-draining LN macrophages significantly decreased GC B cells in these nodes. Thus, although LNs inefficiently captured viral Ag directly from the blood, GC formation in non-draining LNs proceeded similarly to draining LNs through LN sinus CD169+ macrophages. Together, our findings reveal a conserved pathway allowing LN macrophages to activate antiviral B cells in LNs distal from infected tissue after blood-borne viral infection.


Assuntos
Infecção por Zika virus , Zika virus , Camundongos , Animais , Linfonodos , Viremia , Centro Germinativo , Macrófagos , Antígenos
3.
iScience ; 27(2): 108877, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318357

RESUMO

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.

4.
J Infect Dis ; 228(Suppl 6): S460-S464, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849396

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic demonstrated how rapidly vaccines and monoclonal antibodies (mAbs) could be deployed when the field is prepared to respond to a novel virus, serving as proof of concept that the prototype pathogen approach is feasible. This success was built upon decades of foundational research, including the characterization of protective antigens and coronavirus immunity leading to the development and validation of a generalizable vaccine approach for multiple coronaviruses. For other virus families of pandemic concern, the field is less prepared. The articles in this special issue have highlighted research gaps that need to be addressed to accelerate the development of effective vaccines and mAbs, to identify generalizable vaccine and mAb strategies, and to increase preparedness against other pandemic threats. Successful implementation of the prototype pathogen approach will require a systematic, multidisciplinary, coordinated approach with expertise and crosstalk among researchers of different virus families.


Assuntos
COVID-19 , Vacinas , Vacinas Virais , Humanos , Anticorpos Antivirais , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Anticorpos Monoclonais
5.
J Infect Dis ; 228(Suppl 6): S398-S413, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849402

RESUMO

Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.


Assuntos
Infecções por Flavivirus , Flavivirus , Vacinas , Infecção por Zika virus , Zika virus , Animais , Humanos , Infecções por Flavivirus/prevenção & controle , Mosquitos Vetores , Infecção por Zika virus/prevenção & controle
6.
NPJ Vaccines ; 8(1): 58, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080988

RESUMO

Zika virus (ZIKV), an arbovirus transmitted by mosquitoes, was identified as a cause of congenital disease during a major outbreak in the Americas in 2016. Vaccine design strategies relied on limited available isolate sequence information due to the rapid response necessary. The first-generation ZIKV mRNA vaccine, mRNA-1325, was initially generated and, as additional strain sequences became available, a second mRNA vaccine, mRNA-1893, was developed. Herein, we compared the immune responses following mRNA-1325 and mRNA-1893 vaccination and reported that mRNA-1893 generated comparable neutralizing antibody titers to mRNA-1325 at 1/20th of the dose and provided complete protection from ZIKV challenge in non-human primates. In-depth characterization of these vaccines indicated that the observed immunologic differences could be attributed to a single amino acid residue difference that compromised mRNA-1325 virus-like particle formation.

7.
Cell Rep ; 42(2): 112126, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795561

RESUMO

To disseminate through the body, Zika virus (ZIKV) is thought to exploit the mobility of myeloid cells, in particular monocytes and dendritic cells. However, the timing and mechanisms underlying shuttling of the virus by immune cells remains unclear. To understand the early steps in ZIKV transit from the skin, at different time points, we spatially mapped ZIKV infection in lymph nodes (LNs), an intermediary site en route to the blood. Contrary to prevailing hypotheses, migratory immune cells are not required for the virus to reach the LNs or blood. Instead, ZIKV rapidly infects a subset of sessile CD169+ macrophages in the LNs, which release the virus to infect downstream LNs. Infection of CD169+ macrophages alone is sufficient to initiate viremia. Overall, our experiments indicate that macrophages that reside in the LNs contribute to initial ZIKV spread. These studies enhance our understanding of ZIKV dissemination and identify another anatomical site for potential antiviral intervention.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Macrófagos , Monócitos/patologia , Linfonodos/patologia
8.
Proc Natl Acad Sci U S A ; 120(3): e2218899120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638211

RESUMO

Cleavage of the flavivirus premembrane (prM) structural protein during maturation can be inefficient. The contribution of partially mature flavivirus virions that retain uncleaved prM to pathogenesis during primary infection is unknown. To investigate this question, we characterized the functional properties of newly-generated dengue virus (DENV) prM-reactive monoclonal antibodies (mAbs) in vitro and using a mouse model of DENV disease. Anti-prM mAbs neutralized DENV infection in a virion maturation state-dependent manner. Alanine scanning mutagenesis and cryoelectron microscopy of anti-prM mAbs in complex with immature DENV defined two modes of attachment to a single antigenic site. In vivo, passive transfer of intact anti-prM mAbs resulted in an antibody-dependent enhancement of disease. However, protection against DENV-induced lethality was observed when the transferred mAbs were genetically modified to inhibit their ability to interact with Fcγ receptors. These data establish that in addition to mature forms of the virus, partially mature infectious prM+ virions can also contribute to pathogenesis during primary DENV infections.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Dengue , Dengue , Microscopia Crioeletrônica , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Animais , Camundongos
9.
J Infect Dis ; 227(12): 1433-1441, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876700

RESUMO

Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) emerged 20 years ago, presaging a series of subsequent infectious disease epidemics of international concern. The recent emergence of SARS-CoV-2 has underscored the importance of targeted preparedness research to enable rapid countermeasure development during a crisis. In December 2021 the National Institute of Allergy and Infectious Diseases (NIAID), building upon the successful strategies developed during the SARS-CoV-2 response and to prepare for future pandemics, published a pandemic preparedness plan that outlined a research strategy focused on priority pathogens, technology platforms, and prototype pathogens. To accelerate the discovery, development, and evaluation of medical countermeasures against new or previously unknown pathogens of pandemic potential, we present here a strategy of research directed at select prototype pathogens. In this manner, leveraging a prototype pathogen approach may serve as a powerful cornerstone in biomedical research preparedness to protect public health from newly emerging and reemerging infectious diseases.


Assuntos
Pandemias , Vacinas , Surtos de Doenças , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevenção & controle , Desenvolvimento de Vacinas , Doenças Transmissíveis/epidemiologia
10.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36402135

RESUMO

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Assuntos
Imunoglobulina M , Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Testes de Neutralização , Infecção por Zika virus/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação
12.
Cell Chem Biol ; 29(5): 811-823.e7, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35231399

RESUMO

Zika virus (ZIKV) is a flavivirus that can cause severe disease, but there are no approved treatments or vaccines. A complication for flavivirus vaccine development is the potential of immunogens to enhance infection via antibody-dependent enhancement (ADE), a process mediated by poorly neutralizing and cross-reactive antibodies. Thus, there is a great need to develop immunogens that minimize the potential to elicit enhancing antibodies. Here we utilized structure-based protein engineering to develop "resurfaced" (rs) ZIKV immunogens based on E glycoprotein domain III (ZDIIIs), in which epitopes bound by variably neutralizing antibodies were masked by combinatorial mutagenesis. We identified one resurfaced ZDIII immunogen (rsZDIII-2.39) that elicited a protective but immune-focused response. Compared to wild type ZDIII, immunization with resurfaced rsZDIII-2.39 protein nanoparticles produced fewer numbers of ZIKV EDIII antigen-reactive B cells and elicited serum that had a lower magnitude of induced ADE against dengue virus serotype 1 (DENV1) Our findings enhance our understanding of the structural and functional determinants of antibody protection against ZIKV.


Assuntos
Vírus da Dengue , Nanopartículas , Infecção por Zika virus , Zika virus , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/química , Humanos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Infecção por Zika virus/prevenção & controle
14.
Cell Host Microbe ; 29(11): 1634-1648.e5, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610295

RESUMO

Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Proteção Cruzada , Vacinas contra Dengue/imunologia , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Dengue/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/sangue , Reações Cruzadas , Dengue/prevenção & controle , Dengue/virologia , Feminino , Genótipo , Humanos , Imunização Passiva , Imunogenicidade da Vacina , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sorogrupo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
15.
J Virol ; 95(23): e0095621, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549976

RESUMO

Dengue virus cocirculates globally as four serotypes (DENV1 to -4) that vary up to 40% at the amino acid level. Viral strains within a serotype further cluster into multiple genotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of vaccine design, and efforts to characterize epitopes targeted by polyclonal mixtures of antibodies are ongoing. Previously, we identified two E protein residues (126 and 157) that defined the serotype-specific antibody response to DENV1 genotype 4 strain West Pac-74. DENV1 and DENV2 human vaccine sera neutralized DENV1 viruses incorporating these substitutions equivalently. In this study, we explored the contribution of these residues to the neutralization of DENV1 strains representing distinct genotypes. While neutralization of the genotype 1 strain TVP2130 was similarly impacted by mutation at E residues 126 and 157, mutation of these residues in the genotype 2 strain 16007 did not markedly change neutralization sensitivity, indicating the existence of additional DENV1 type-specific antibody targets. The accessibility of antibody epitopes can be strongly influenced by the conformational dynamics of virions and modified allosterically by amino acid variation. We found that changes at E domain II residue 204, shown previously to impact access to a poorly accessible E domain III epitope, impacted sensitivity of DENV1 16007 to neutralization by vaccine immune sera. Our data identify a role for minor sequence variation in changes to the antigenic structure that impacts antibody recognition by polyclonal immune sera. Understanding how the many structures sampled by flaviviruses influence antibody recognition will inform the design and evaluation of DENV immunogens. IMPORTANCE Dengue virus (DENV) is an important human pathogen that cocirculates globally as four serotypes. Because sequential infection by different DENV serotypes is associated with more severe disease, eliciting a protective neutralizing antibody response against all four serotypes is a major goal of vaccine efforts. Here, we report that neutralization of DENV serotype 1 by polyclonal antibody is impacted by minor sequence variation among virus strains. Our data suggest that mechanisms that control neutralization sensitivity extend beyond variation within antibody epitopes but also include the influence of single amino acids on the ensemble of structural states sampled by structurally dynamic virions. A more detailed understanding of the antibody targets of DENV-specific polyclonal sera and factors that govern their access to antibody has important implications for flavivirus antigen design and evaluation.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue , Conformação Molecular , Sorogrupo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Formação de Anticorpos , Dengue , Vacinas contra Dengue/química , Vacinas contra Dengue/imunologia , Epitopos/química , Epitopos/imunologia , Flavivirus , Humanos , Mutação , Taiwan , Proteínas do Envelope Viral , Vírion/metabolismo
16.
J Virol ; 95(20): e0084421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346770

RESUMO

Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV NS1 and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV NS1 and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity in the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. Because exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcomes. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and is secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here, we assessed WNV NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in the circulation facilitate WNV dissemination to the brain and affect disease outcomes. Our findings facilitate understanding of the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/imunologia , Vírus da Dengue/metabolismo , Células Endoteliais , Feminino , Flavivirus/patogenicidade , Evasão da Resposta Imune , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas não Estruturais Virais/análise , Proteínas não Estruturais Virais/sangue , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/imunologia
17.
Science ; 373(6551): 236-241, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34083449

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes. We found that the catalytic subunit of the RdRp, nsp12, ligates two iron-sulfur metal cofactors in sites that were modeled as zinc centers in the available cryo-electron microscopy structures of the RdRp complex. These metal binding sites are essential for replication and for interaction with the viral helicase. Oxidation of the clusters by the stable nitroxide TEMPOL caused their disassembly, potently inhibited the RdRp, and blocked SARS-CoV-2 replication in cell culture. These iron-sulfur clusters thus serve as cofactors for the SARS-CoV-2 RdRp and are targets for therapy of COVID-19.


Assuntos
Coenzimas/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/química , Óxidos N-Cíclicos/farmacologia , Ferro/metabolismo , SARS-CoV-2/efeitos dos fármacos , Enxofre/metabolismo , Motivos de Aminoácidos , Animais , Antivirais/farmacologia , Sítios de Ligação , Domínio Catalítico , Chlorocebus aethiops , Coenzimas/química , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/farmacologia , Ferro/química , Domínios Proteicos , RNA Helicases/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Marcadores de Spin , Enxofre/química , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Zinco/metabolismo
18.
Immunology ; 164(2): 386-397, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056709

RESUMO

There is growing interest in understanding antibody (Ab) function beyond neutralization. The non-structural protein 1 (NS1) of Zika virus (ZIKV) is an attractive candidate for an effective vaccine as Abs against NS1, unlike the envelope or premembrane, do not carry the risk of mediating antibody-dependent enhancement. Our aim was to evaluate whether ZIKV NS1 Abs elicited following natural infection in humans can mediate antibody-dependent cellular cytotoxicity (ADCC). We evaluated the isotype specificity of ZIKV-specific Abs in immune sera and supernatants from stimulated immune PBMC and found that Abs against ZIKV NS1 and virus-like particles were predominantly of the IgG1 isotype. Using a recently developed FluoroSpot assay, we found robust frequencies of NS1-specific Ab-secreting cells in PBMC of individuals who were naturally infected with ZIKV. We developed assays to measure both natural killer cell activation by flow cytometry and target cell lysis of ZIKV NS1-expressing cells using an image cytometry assay in the presence of ZIKV NS1 Abs. Our data indicate efficient opsonization of ZIKV NS1-expressing CEM-NKR cell lines using ZIKV-immune but not ZIKV-naïve sera, a prerequisite of ADCC. Furthermore, sera from immune donors were able to induce both NK cell degranulation and lysis of ZIKV NS1 CEM-NKR cells in vitro. Our data suggest that ADCC is a possible mechanism for ZIKV NS1 Abs to eliminate virally infected target cells.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteínas não Estruturais Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Células Cultivadas , Reações Cruzadas/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Vacinas Virais/imunologia , Infecção por Zika virus/virologia
19.
J Infect Dis ; 224(9): 1550-1555, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33961055

RESUMO

Zika virus (ZIKV) deoxyribonucleic acid vaccine VRC5283 encoding viral structural genes has been shown to be immunogenic in humans. Recognizing that antigenically related flaviviruses cocirculate in regions with ZIKV activity, we explored the degree of antibody cross-reactivity elicited by this vaccine candidate using genetically diverse flaviviruses. The antibody response of vaccinated individuals with no evidence of prior flavivirus infection or vaccine experience had a limited capacity to bind heterologous viruses. In contrast, vaccine-elicited antibodies from individuals with prior flavivirus experience had a greater capacity to bind, but not neutralize, distantly related flaviviruses. These findings suggest that prior flavivirus exposure shapes the humoral immune response to vaccination.


Assuntos
Anticorpos Neutralizantes , Flavivirus , Vacinas de DNA , Infecção por Zika virus , Zika virus , Anticorpos Antivirais , Formação de Anticorpos , Reações Cruzadas , Flavivirus/genética , Flavivirus/imunologia , Humanos , Testes de Neutralização , Plasmídeos , Vacinas , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/prevenção & controle
20.
NPJ Vaccines ; 6(1): 50, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837212

RESUMO

The development of an effective AIDS vaccine remains a challenge. Nucleoside-modified mRNAs formulated in lipid nanoparticles (mRNA-LNP) have proved to be a potent mode of immunization against infectious diseases in preclinical studies, and are being tested for SARS-CoV-2 in humans. A critical question is how mRNA-LNP vaccine immunogenicity compares to that of traditional adjuvanted protein vaccines in primates. Here, we show that mRNA-LNP immunization compared to protein immunization elicits either the same or superior magnitude and breadth of HIV-1 Env-specific polyfunctional antibodies. Immunization with mRNA-LNP encoding Zika premembrane and envelope or HIV-1 Env gp160 induces durable neutralizing antibodies for at least 41 weeks. Doses of mRNA-LNP as low as 5 µg are immunogenic in macaques. Thus, mRNA-LNP can be used to rapidly generate single or multi-component vaccines, such as sequential vaccines needed to protect against HIV-1 infection. Such vaccines would be as or more immunogenic than adjuvanted recombinant protein vaccines in primates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...